
Data Normalization, Denormalization,
and the Forces of Darkness

a white paper

by Melissa Hollingsworth

melissa@fastanimals.com

http://www.fastanimals.com/melissa/

v. 0.4

This paper is in beta. Feedback is welcome.

Data Normalization, Denormalization, and the Forces of Darkness / Hollingsworth / p1

Introduction
According to one SQL blogger, “normalization” and “denormalization” are the most common

search terms bringing people to his site. Typing “normali” into Google brings up suggestions

like “normalization” and “normalizing data” high on the list. If you actually search for

“normalization,” your top search results include Wikipedia, overviews, tutorials, and basics. All

the bases are covered!

Many of these overviews just skim the surface, never explaining why anyone would bother

doing this. Some use examples which illustrate one principle while violating others, leading to

confusion. Many use precisely the same examples for the higher forms, reworded slightly from

each other, which might lead a more cynical person to wonder how well the writers grasp what

they describe. If we can’t create our own examples, do we really understand the principle?

I do see a need to distribute basic information more widely. If it were common knowledge,

we wouldn’t see so many people searching for it. We also wouldn’t see so many people

complaining that it’s hard to understand.

This paper covers the basics in a manner which I hope is both accurate and easy to

understand, and also slithers into intermediate territory. We need at least an intermediate level of

knowledge before we can decide how far to normalize, the possible efficiency tradeoffs, if

denormalization is needed, and (if it is) what denormalization methods to use.

What Is Normalization?
“Normalization” just means making something more normal, which usually means bringing it

closer to conformity with a given standard.

Database normalization doesn’t mean that you have have weird data, although you might. It’s

the name for an approach for reducing redundant data in databases. If the same data is stored in

more than one place, keeping it synchronized is a pain. Furthermore, if you can’t trust your

synchronization process absolutely, you can’t trust the data you retrieve.

You may have heard that normalization is the enemy of search efficiency. This is kind of

truish, but not really true. At the lower levels, imposing a bit of order on your chaotic heap of

data will probably improve efficiency. At the higher levels you may see a performance

slowdown, but it probably won’t be as bad as you fear and there are ways to address any

problems you do find.

Let’s get to work on a data set.

I work for a company which sells widgets. We must track widget inventory, prices, order

numbers, blah blah blah Lord, I’m falling asleep just writing about it.

You know what? You look trustworthy. I’m going to tell you the sinister truth. I’ve been

retained by an organization called the Council of Light, which stands alone against the forces of

evil and darkness which daily threaten to engulf our innocuous, daylit world.

Data Normalization, Denormalization, and the Forces of Darkness / Hollingsworth / p2

The Council of Light wants me to put their data into a SQL database so that they can retrieve

it more easily. They have lists of monsters, types of weapons, historical records of monster

outbreaks, a registry of currently available monster fighters, and a great deal more.

Unfortunately, it’s all stored in a combination of dusty tomes and piles of index cards. I must

design a database which models this information accurately and usefully.

Let’s dive in.

A table of active monster fighters seems fairly obvious—full name, date of birth, formal

training, date of joining the Council, fighting skills, and whatever else we come up with.

LAST NAME
FIRST
NAME

DATE OF
BIRTH

TRAINING
DATE
JOINED
COUNCIL

FIGHTING SKILLS

Buttkicker Brenda 19850123
Knights Templar
Special Ops

20050615

blades, distance
weapons, firearms,
martial arts,
munitions, stakes

Cutthroat Cathy 19760721 Order of the Stake 20020513 blades, stakes

Killer Karl 19840812 Demon Dojo 20040914
blades, distance
weapons, martial
arts

Martyr Mel 19790304 Demon Dojo 20000912
blades, distance
weapons, martial
arts

Monsterbasher Marvin 19820118 Order of the Stake 20071120 blades, stakes

Vampkiller Valerie 19810329 School for Slayers 20030502
blades, firearms,
stakes

And 50
others...

And I’d better have a table of those who provide support from the sidelines—students of the

arcane, rogue fighters who sometimes partner with the Council, etc. Two tables so far.

Data Normalization, Denormalization, and the Forces of Darkness / Hollingsworth / p3

LAST NAME FIRST NAME
DATE OF
BIRTH

DATE JOINED
COUNCIL

EXPERTISE

Clueful Clarence 19640723 19950312

antique weapons,
American folklore,
American history,
blades, martial arts

Elder Ellen 19440105 19680345
world folklore, world
history

Learned Lucy 19510821 19730103
demons, fey,
lycanthropes,
undead

Rogue Rodney 19840323 firearms, munitions

Sage Sally 19710612 19980226
lycanthropes,
Romanian folklore,
Romanian history

And 200
others...

But wait. Many of the sideline personnel have at least some fighting ability. Clarence

Clueful has retired from active fighting because middle age took away his edge, but he still

knows how to use those weapons as well as discuss them. Rodney Rogue’s index card is in the

half-toppled pile of “other people” instead of “fighters” because he isn’t a Council of Light

member, but he does fight. Wouldn’t it be simpler just to merge these, and have one table for all

our human resources?

But then we have fields which are null for almost every entry, such as formal training,

because only rows for full-fledged fighters need them. Those empty fields will lead to a

performance penaltyi which is unacceptable when designing for a secret society charged with

keeping the world safe from the forces of darkness.

So are two tables the right choice? Isn’t that a much worse performance hit, having to search

at least two tables whenever we want to search all monster fighters?

Hmm. Maybe we should put this cowboy database design aside for the moment, to see if we

can learn anything from the normalized approach.

Normalization Forms
We usually speak of five normalization forms. This is a little misleading.ii The standard

numbering is useful for discussion, though, since everyone knows what “Third Normal Form” or

“Normal 3” means without needing an explanation. One might say the names are normalized.

Data Normalization, Denormalization, and the Forces of Darkness / Hollingsworth / p4

First Normal Form

The First Normal Form is really just common sense. It tells us two things: to eliminate

duplicate columns, and that some column or combination of columns should be a unique

identifier.

Eliminating columns which are flat-out duplicates is a no-brainer. Obviously you shouldn’t

create two different columns called “birthdate” and “date of birth,” since a given individual is

generally born only once.

Duplication may be a little less obvious than blatant copies, though. If my monster fighter

table has a firstname field and a lastname field, it might be tempting to have a derived fullname

field to speed up searching. Derived data is allowed at the Normal 1 level.

LAST
NAME

FIRST
NAME

FULL NAME DATE OF
BIRTH

TRAINING DATE
JOINED
COUNCIL

FIGHTING
SKILLS

Buttkicker Brenda Buttkicker, Brenda 19850123 Knights Templar
Special Ops

20050615 blades, distance
weapons,
firearms, martial
arts, munitions,
stakes

But what happens if monster fighter Brenda Buttkicker gets married and takes her husband’s

name? Wouldn’t you, if you were born with a name like “Buttkicker”? Now we need to update

two fields.

We could rely on our application, and all other possible applications ever written by anyone

else, to update both lastname and fullname. We could set up trigger functions to autochange

fullname when lastname is changed, and hope nobody accesses the data through any other

means. Or we could be normal and eliminate the duplication of the lastname and fullname

columns by not having a fullname column, and combine firstname with lastname when we need

a full name.

A “derivation” as simple as bunging two strings together is really just duplication, trying to be

sneaky by wearing a Richard Nixon mask. Duplication, sneaky or otherwise, is disallowed by

Normal 1.

The other requirement of the First Normal Form is that some column or combination of them

be unique in the database. The birthdate field might seem like a good choice, since there are an

awful lot of days in a span of several generations. But what if a pair of twins joins the Council?

Also, as our team grows, chance makes it virtually certain that at least two were born on the

same day. Consider the so-called Birthday Paradox—whenever 23 people are considered, the

odds are better than even at that least two of them share a birthday, so when several hundred

people of one generation are considered the odds of birthdate overlap are unacceptably high.

firstname+lastname+birthdate might be a safe enough choice for uniqueness, at the Normal 1

level.

Data Normalization, Denormalization, and the Forces of Darkness / Hollingsworth / p5

Why all this insistence on uniqueness at the most basic normalization level? Simple. We

need a reliable way to retrieve any given single record.

Second Normal Form

Normal 2 includes all of Normal 1, and goes further. Normal 2 tells us that duplicate data

should be removed and placed in a child table. For instance, I may make a table of known

werewolf clans throughout history, starting with one in Rome.

NAME LOCATION DATE
DISCOVERED

DATE
ELIMINATED

Dances with Death Rome 12940614 14020819

There’s more than one Rome in the world, so we specify: Rome, Italy, Europe.

NAME LOCATION DATE
DISCOVERED

DATE
ELIMINATED

Dances with Death Rome, Italy, Europe 12940614 14020819

Let’s add more clans. Here’s one in Athens, Greece, Europe. One in Cairo, Egypt, Africa.

One in London, England, Europe. Hmm, we’re racking up a lot of fields that say, “Europe.”

And here’s one in Rome—heeeey, there was another one in Rome earlier in the list.

Locations can be duplicate data. There’s no sense in having City, Country, and Continent

columns when cities tend to stay put, but we still have to identify which Rome and which Cairo.

We could cram all this into one column, with “Rome, Italy, Europe” as a string.

NAME LOCATION DATE
DISCOVERED

DATE
ELIMINATED

Dances with Death Rome, Italy, Europe 12940614 14020819

Family of Blood Athens, Greece, Europe 16930321 16980605

Fury with Fur Cairo, Egypt, Africa 19040506 19750302

White Fangs London, United
Kingdom, Europe

17890817 18011225

Zombies Are Lunch Rome, Italy, Europe 19540802 19680812

But sheesh, talk about your duplicate data. We’re making it worse.

Data Normalization, Denormalization, and the Forces of Darkness / Hollingsworth / p6

The smarter approach is to use a location identifier—perhaps modern country codes and the

countries’ postal codes,which are already designed to identify particular areas—and have a

separate locations table which expands “20:11471” into the sixth district of Cairo.

NAME LOCATION DATE
DISCOVERED

DATE
ELIMINATED

Dances with Death 039:00123 12940614 14020819

Family of Blood 030:17675 16930321 16980605

Fury with Fur 020:11471 19040506 19750302

White Fangs 044:SW8 17890817 18011225

Zombies Are Lunch 039:00172 19540802 19680812

When we use a location ID instead of a human-readable string, we’ve also taken care of the

problem of strings being entered inconsistently. “Philadelphia, United States of America, North

America”? “Philadelphia, PA, U.S.A., North America”? Some other variation? Which is it? It’s

none of those; it’s “001:19131” in a specific part of Philadelphia. By removing duplicate data

into a child table, we’ve also taken care of the problem of sneaky duplicates which don’t actually

look alike. We also distinguish between different districts in large cities, and pre-solve the

problem of what to enter when the Council finds a werewolf clan in London, Ontario, Canada.

 Do you feel clever yet? Now we can retrieve data with confidence, knowing that searching

one field for one string will return every werewolf clan which was centered in that area. If we

want to search all of Egypt, we need only search for fields beginning with “020:”. We might

even want to go nuts and prepend a continent number, so that we can trivially search all of

Africa.iii

Normal 2 also encourages us to make use of foreign keys. If I try to enter a new werewolf

clan without a location ID, I should be at least warned and probably prevented. The same is true

if I enter a location ID which isn’t defined in the locations table. If I’m entering a new clan

whose base of operations isn’t yet known, I should use an appropriate reserved ID which is

predefined in the locations table accordingly.

Removing duplicate data led us directly into a better system for categorizing that same data.

Now we’re really getting somewhere.

Third Normal Form

Normal 3 includes all of Normal 2, and goes a big step further. It tells us that a given table

should contain no information which is not directly related to the primary key.

In theory, that sounds like a no-brainer. Of course all the information in a row is related, or

what would it be doing there? But think about the implications. One column is the primary key,

and we should remove any columns which aren’t dependent on the primary key. Every non-key

field must provide a fact about the key.

Data Normalization, Denormalization, and the Forces of Darkness / Hollingsworth / p7

Let’s move on to a table of which weapons work well with which monsters. Our needs

include chainsaws for zombies, bullets for werewolves, and stakes for vampires. Does

composition matter? Absolutely, since vampires require wooden stakes and only a silver bullet

will take out a werewolf. Does the manufacturer matter? Not really; any functional stake or

chainsaw or bullet will do the job. “The stake is wooden” provides a fact we need to know about

stakes when we’re looking up weapons to use. “The stake was made by Oddball Weapons,

LLC,” applies only to some of our stakes, and isn’t relevant to killing the nosferatu currently

battering at our door.

WEAPON MATERIAL MONSTER

axe ANY zombie

bullet silver werewolf

blade ANY zombie

blade metal vampire

blade silver werewolf

chainsaw ANY zombie

cross ANY vampire

garlic ANY vampire

stake wood vampire

sunlight ANY vampire

sunlight ANY werewolf

ANY silver werewolf

We may have other weapons-related tables, such as a current inventory or a list of what

vendors sell what. The manufacturer will be relevant to some of these, but it’s not relevant to the

table of which weapons to use on which monsters, and shouldn’t be stuck in as an extra.

You can use one of your data fields as the primary key, if you know it’s unique. But do you

know it’s unique? Social security numbers are supposed to be unique, but the U.S. government

has issued duplicates by accident. We can still get away with combinations of fields at the

Normal 3 level—although we’re starting to see why we shouldn’t—so perhaps weapon type

combined with weapon composition would work.

Fourth Normal Form

Normal Four includes Normal 3 and adds one more requirement: no multi-value

dependencies. A record shouldn’t contain two or more independent multi-valued facts about an

entity.

Let’s look at that table of fighters again.

Data Normalization, Denormalization, and the Forces of Darkness / Hollingsworth / p8

LAST NAME
FIRST
NAME

DATE OF
BIRTH

TRAINING
DATE
JOINED
COUNCIL

FIGHTING SKILLS

Buttkicker Brenda 19850123
Knights Templar
Special Ops

20050615

blades, distance
weapons, firearms,
martial arts,
munitions, stakes

Cutthroat Cathy 19760721 Order of the Stake 20020513 blades, stakes

Killer Karl 19840812 Demon Dojo 20040914
blades, distance
weapons, martial
arts

Martyr Mel 19790304 Demon Dojo 20000912
blades, distance
weapons, martial
arts

Monsterbasher Marvin 19820118 Order of the Stake 20071120 blades, stakes

Vampkiller Valerie 19810329 School for Slayers 20030502
blades, firearms,
stakes

And 50
others...

Consider the Training and Fighting Skills columns. We as humans know that there’s a pretty

close relationship between these two things, but are they guaranteed related? If so, we don’t

need Fighting Skills at all because we can derive it from Training. If not, they’re separate values

(in the logical sense). The Council tells me that they’re separate values, since the Order of the

Stake sometimes drops the ball on training with blade weapons.

So. Let’s pull them out.

First let’s look at a one-to-many relationship. Each fighter attended one and only one training

program, while each training program has many graduates.

UID LAST NAME FIRST NAME TRAINING

XXX Buttkicker Brenda
Knights Templar
Special Ops

XXX Cutthroat Cathy Order of the Stake

XXX Killer Karl Demon Dojo

XXX Martyr Mel Demon Dojo

XXX Monsterbasher Marvin Order of the Stake

XXX Vampkiller Valerie School for Slayers

XXX And 50 others...

I treat the fighter as the key, because the fighter is a “child” of the “parent” training program.

If I treated the training program as the key, I’d either have multiple columns of fighter names for

Data Normalization, Denormalization, and the Forces of Darkness / Hollingsworth / p9

its graduates or I’d still have a separate entry for each fighter-program combination. Why

borrow trouble?

Now we consider the set of fighting skills. This is a many-to-many relationship, so trouble is

borrowing us. To keep the table short, we’ll consider only Brenda and Mel.

UID
LAST
NAME

FIRST NAME FIGHTING SKILLS

XXX Buttkicker Brenda
blades, distance weapons, firearms, martial arts,
munitions, stakes

XXX Martyr Mel blades, distance weapons, martial arts

One fighter can have many skills. One skill can be had by many fighters. To avoid multi-

value dependencies, we simply string them out down rows.

UID FIGHTER_ID FIGHTING SKILL

AAA YYY blades

AAA YYY distance weapons

AAA YYY firearms

AAA YYY martial arts

AAA YYY munitions

AAA YYY stakes

AAA ZZZ blades

AAA ZZZ distance weapons

AAA ZZZ martial arts

I can search to find out what skills a given fighter has, or what fighters have a given skill, with

equal facility.

The names, which are now duplicate data, have been extracted into a child table. Each fighter

has an assigned ID number. I’ll also apply these FIGHTER_ID numbers in the table of training

programs, table of biographical data, and whatever else we need. I can use the same ID number

when looking up Cathy Cutthroat’s fighting skills for mission assignment, her training program

to find her fellow alums, or her birthday to plan her surprise party.

I’ve left the fighting skills as text for readability, but the duplication of data is pretty obvious.

Fighting skills will probably also have ID numbers, unless we can guarantee that all “blades” are

created equal and that there’s nothing else we’ll ever need to record about those.

Keen observers will note that we now require a guaranteed-unique ID in a single field. This

isn’t always mission-critical. In SQL, you can simulate it with views. Really, though, why not

have a guaranteed-unique ID?

Data Normalization, Denormalization, and the Forces of Darkness / Hollingsworth / p10

We now have a required primary key in a single field, with no more of this namby-pamby

nonsense about some combination of fields being unique. A good practice is to have a column

just to hold a unique numeric key. Another good practice is to let the database assign a number,

via SQL’s newid() function.

 If you want IDs which are universally unique and not just unique to your table or database,

another choice is to follow the UUID standard as defined in RFC 4122. Your programming

language of choice probably already has a library/class/module/whatever to generate them (e.g.,

java.util.UUID).

Some databases, such as Postgres, support UUID as a native datatype. For others, just

remember that it’s 128 bits by definition and go from there. Some people simply store it as a

CHAR(36), while others get fancier (e.g., stripping hyphens and performing hex conversions) to

store in other formats.

A Universal UID isn’t necessary to meet Normal 4, though. The UID need only be unique to

the table, so if duplicates in other tables aren’t a problem in your design, letting the database

assign the ID is an admirably lazy technique.

Marvin+Monsterbasher+19820118 looks likely to stay unique, but I’m not convinced that

stake+wood is good enough. I’m taking all of the Council’s tables to Normal 4.

Let’s look briefly at both approaches to a unique ID. If I choose the UUID approach, my

primary keys will now all be something like

12345678-1234- 5678-1234-567812345678

and my other fields tell me some fact about that—starting with what the heck it is. As you

can see, it’s a bit much for a human to process visually or mentally. It need never be displayed in

reports intended for human eyes, though.

If I let the database assign non-universal UIDs, the numbers will be smaller—probably small

enough for humans to manage, so that people could memorize their own monster fighter ID

numbers. If I want the UIDs human-usable and don’t need them to be unique in the entire

universe, that’s probably the right approach. If any Council members complain about feeling

like numbers instead of people, I’ll just mumble something about the computer requiring it.

Fifth Normal Form

Normal 5 doesn’t come up often. At least in theory, any data set normed to Normal 4 usually

conforms to Normal 5 without further work. There are those times, though, and the Council has

presented me with some things I should consider.

 There is no such thing as a wooden chainsaw, for obvious reasons. I can let my application

carry the burden of preventing users from accidentally entering a wooden chainsaw as a new

weapon type, or I can bite the bullet and tackle Normal 5. Also, in our monster fighters table, we

have a near-opposite situation—any fighter who has finished one of the several anti-monster

training programs is presumed competent in the particular fighting techniques taught by that

program. I can let my application fill in duplicate fields of techniques, or I can normal up and

conform to Normal 5.

Data Normalization, Denormalization, and the Forces of Darkness / Hollingsworth / p11

A data set conforms with the Fifth Normal Form if and only if every join dependency in it is

implied by the candidate keys.

Um, what?

When real-world constraints mean that some combination of allowed values is not a valid

combination, that combination must be disallowed by the logical data structure itself in order to

meet Normal 5. For instance, a real-world situation may be such that W=X means that Y can

never equal Z, but the existing Normal 4 structure of the table doesn’t disallow it because each

field entry is valid. We could apply a constraint, but that’s cheating. We’re talking about the

logical data design itself.

On the other side of the coin, a real-world constraint may mean that value A with value B

always implies value C. The Normal 4 structure would duplicate value C for each such entry,

even though it can be derived from the existence of values A and B. This isn’t derived data in the

usual sense—it’s not A times B, for example. It’s inferable because something in the real world

tells us that it must always be that way.

To meet Normal 5, we must set up the tables such that Y=Z can never occur in the logical data

design, and we must remove C on the grounds that it can be inferred from A and B.

Um. What?

It’s hard to understand this abstractly, so let’s talk about the Council of Light’s weapon data.

This is going to get detailed, but we don’t have to consider every possible combination. That’s

the Council’s job. Our job is to create a data model which accurately represents the data they’ll

put in.

Let’s start with the wooden chainsaw problem. A monster is vulnerable to certain weapon-

material combinations. We may choose to model this data by saying that it is vulnerable to some

weapons and some materials. We derive its weapon-material vulnerabilities by checking its

weapon vulnerabilities and its material vulnerabilities. Let’s look at our weapons table again:

Data Normalization, Denormalization, and the Forces of Darkness / Hollingsworth / p12

UID WEAPON MATERIAL MONSTER

XXX axe ANY zombie

XXX bullet silver werewolf

XXX blade ANY zombie

XXX blade metal vampire

XXX blade silver werewolf

XXX chainsaw ANY zombie

XXX cross ANY vampire

XXX garlic ANY vampire

XXX stake wood vampire

XXX sunlight ANY vampire

XXX sunlight ANY werewolf

XXX ANY silver werewolf

We’re seeing a fair bit of duplication. Consider the werewolf entries—all but one are for

silver things. We have an ANY silver entry, but bullets are there separately because they’re the

weapon of choice, and we also have “blade” for consistency when searching for monsters who

can be hurt by blades. This isn’t needful duplication. Given that monster is werewolf and

material is silver, we can derive the fact that the weapon will do damage in its usual manner.

Normal 5 tells us that we should remove any data which can be derived from other data—

such as “silver [anything] hurts werewolves.”

Is this universal? Is it something that will always be true? If so, this means that I split my

weapons table into three tables. One is for weapon type and weapon composition, one is for

weapon type and monster vulnerability, and one is for weapon composition and monster

vulnerability.

UID WEAPON MONSTER

XXX axe zombie

XXX stake vampire

UID MATERIAL MONSTER

XXX silver werewolf

XXX wood vampire

UID WEAPON MATERIAL

XXX axe metal

XXX axe silver

XXX stake metal

XXX stake wood

One tells me that vampires are vulnerable to stakes. Another tells me that vampires are

vulnerable to wood. The third tells me that stakes of wood are available. From the first two, we

derive the fact that wooden stakes are handy anti-vampire weapons. Meanwhile,

“wood+chainsaw” is coming up blank from the “weapon type and weapon composition” table.

What if someone creates a chainsaw with wood-tipped chain links specifically for anti-

vampire use? That’s pretty cool, and we have the case pre-covered. If we create an entry for a

Data Normalization, Denormalization, and the Forces of Darkness / Hollingsworth / p13

chainsaw whose relevant material is wood, it’ll automatically come up as a possible anti-vampire

weapon because of the wood vulnerability.

This leads to some problems, though. Vampires are vulnerable to the material ANY—but

only if it’s in the shape of a cross. What does that mean for our material-monster table? There

aren’t enough real-life material-monster constraints to make this a good data model, and so our

previous table doesn’t need to be split further to meet Normal 5—at least, not in that particular

way. Still, humor me while I carry this a bit further.

Our hypothetical weapon-material table also can’t represent reality as well as we might wish.

Wooden sunlight, anyone? Are there any possible composition values for sunlight other than,

well, “sunlight”? What’s the weapon and what’s the material?

But sunlight, although deadly to vampires, isn’t really a weapon as such. You can’t carry it

around and deploy it. Perhaps it shouldn’t be in our weapons table. We can create a separate

table for environments, including those which are so hostile to the monster that they actively

harm it.

Nota bene: Applying Normal 5 breaks data up into smaller and smaller tables. Splitting up

our data into such small and specialized tables forces us to think about edge and corner cases.

Hmm. That’s good to know. Our first attempt at further breakdown didn’t work out so well,

but let’s follow this thought process further. What won’t fit? Why won’t it fit?

A moment ago we were thinking about crosses and vampires. From the most elaborate silver

crucifix to a couple of sticks properly tied, any cross can hold a vampire at bay. Composition

“ANY” is needed to represent that.

With werewolves, on the other hand, only the silver crucifix would be useful and then only if

we can bash the monster on the noggin with it. In the werewolf case, it’s the silver composition

that matters and we’ll need the semi-generic weapon “blunt instrument.” The data model’s

failure taught us something about what we’ll need for a successful one.

We could also think about axes. Only cold iron and cold steel work against evil fey, but that’s

a metal vulnerability. Anything sharp enough to cut flesh can dismember a zombie. A silver axe

would be too soft to cut well but would still hurt a werewolf. Vampires can be cut by anything

sharp but must be beheaded to kill them that way. A given axe could fall into any or all or none

of the appropriate categories.

Data Normalization, Denormalization, and the Forces of Darkness / Hollingsworth / p14

UID WEAPON MATERIAL MONSTER

XXX axe ANY zombie

XXX axe gold

XXX axe iron fey, zombie

XXX axe metal zombie

XXX axe silver werewolf,
zombie

XXX axe steel fey, zombie

XXX axe wood

Hmm. Metal and iron aren’t at the same level; most of those things are metals. And we

aren’t distinguishing between any old iron and the cold-worked iron needed to hurt the fey

creatures. Perhaps what we really need is a hierarchy:

Everything -> inorganic -> metal -> iron -> cold

Data Normalization, Denormalization, and the Forces of Darkness / Hollingsworth / p15

UUID KINGDOM CONTAINS

XXXX ANY

XXXX animal YYYY,
YYYY,
YYYY

XXXX energy YYYY,
YYYY

XXXX inorganic YYYY,
YYYY,

YYYY,
YYYY,
YYYY,
YYYY

XXXX vegetable YYYY,
YYYY,
YYYY

UUID INORGANIC CONTAINS

YYYY ANY

YYYY crystal
ZZZZ, ZZZZ,
ZZZZ, ZZZZ,
ZZZZ

YYYY metal

ZZZZ, ZZZZ,
ZZZZ,
ZZZZ,
ZZZZ

YYYY other
ZZZZ, ZZZZ,
ZZZZ, ZZZZ,
ZZZZ

UUID METAL TYPES

ZZZZ ANY

ZZZZ copper

ZZZZ gold

ZZZZ iron
AAAA,

BBBB

ZZZZ silver
CCCC,
DDDD

ZZZZ steel
AAAA,
BBBB

Now we’re really getting somewhere. Mineral refers us to metal, which refers us to silver,

which can refer us to blessed or unblessed if necessary. Note that I’ve traded in my table-unique

IDs for universally unique IDs. The big win is that “energy, sunlight” and “mineral, metal,

silver” can each be listed as a monster vulnerability, even though they’re on different hierarchical

levels.

For we designing the database, the task isn’t to think up every possible combination. That’s

the Council’s job. Our job is to think of what kinds of things we need to record, and examples

which push the boundaries of standard rules help us do that.

You’ve probably noticed that we have a one-to-many or many-to-many relationship a single

row, listing multiple children in a single field. I left it that way for readability, but a truly

normalized table would consist of nothing but IDs until the leaf level(s). A slice might look like

this:

UUID PARENT_ID CHILD_ID

XXXX AAAA QQQQ

Data Normalization, Denormalization, and the Forces of Darkness / Hollingsworth / p16

XXXX AAAA RRRR

XXXX BBBB QQQQ

Woo. We’re rapidly moving further away from the human-readable. We may not choose to

do it precisely this way.

Whether or not we choose to implement Normal 5, thinking it through is leading us to some

good realizations. A team of vampire fighters, trapped in a cellar at midnight, would not be

amused to learn that sunlight is a useful option. A team of werewolf hunters, on the other hand,

may be pleasantly surprised to realize that the silver part of their vampire-hunting kit can be

repurposed.

I don’t recommend Normal 5 for most real-world situations even when it applies smoothly,

since it doesn’t allow for exceptions. Those real-world constraints on which we relied may turn

out not to constrain universally and forever. What if an item is made of silver but is so small and

light that it can’t conceivably hurt a werewolf?

“Anything silver hurts werewolves” and “all crosses hurt vampires” may be true in theory, but

the real world seldom matches theoretical constraints. A thrown dime isn’t a useful anti-

werewolf missile. A cross made by crossing your forefingers will only slow a vampire down if

he’s laughing too hard to attack you. A database for real use must let us store data for real cases,

including exceptions to general rules.

Still, even without implementing it, trying to apply the Normal 5 process has shown us that

improbable combinations should issue warnings, that some things we think of as weapons should

be treated differently from others, that materials of composition are a hierarchy rather than a

simple list, and that weaponry will require a great deal more attention than we realized back in

Normal 4.

By using Normal 5 as a thought exercise, we get many of its planning benefits without its

drawbacks of numerous microtables and performance slowdowns.

Sixth Normal Form

Hey, didn’t she say “five” earlier? Yeah, but I’m going to mention this for completeness.

You may have heard of a Sixth Normal Form. This term is used in two different ways, and

both of them are for academic use. It’s intended to break down data relations until they’ve been

reduced to irreducible components. If you’re designing real databases for real use, ignore it.

Both of it. Please.

Denormalization
Denormalization doesn’t mean not normalizing. It’s a step in the process. First we normalize,

then we realize that we now have hundreds or thousands of small tables and that the performance

Data Normalization, Denormalization, and the Forces of Darkness / Hollingsworth / p17

cost of all those joins will be prohibitive, and then we carefully apply some denormalization

techniques so that our application will return results before the werewolves have overrun the city.

Deciding How Far to Normalize

I believe that running all the way up to Normal 5 can be a useful thought exercise for any

database which is being designed instead of just tossed together. But when it’s time to do the

grunt work of mapping all the actual tables and columns, we first decide how far we need to go.

Even a spreadsheet should comply with Normal 1. There’s really no excuse for duplicate

columns and non-unique entries. If your hardware can’t handle that and your data is

understandable without it, do you need a real database at all? Searching a directory of text files

might serve you better.

Normal 2 is a good idea for all but the smallest and most casual of databases. If you

coordinate a group of half a dozen fighters who only battle zombies and operate entirely in

Boise, then duplicate data may not be a problem and you may be able to ignore Normal 2.

Everyone else should conform to it.

Normal 3 is necessary, at least in the long term, for any business operation or any other

operation where the data is critical. It may seem a bit hardcore, but it’s vital for any organization

which has more data than it could reasonably process by hand. That’s the crossover point at

which we must treat the database as a vital part of the organization’s mission.

Normal 4 isn’t always necessary, but if you’ve done Normal 3, why not have a guaranteed-

unique ID for each record? Unlike some of the other steps, this one is actually a performance

win. It’s faster to look up one field than to check several to see if the combination’s unique, and

you still have the option of searching by other means. Stringing data down rows instead of

across columns may lead to performance slowdown, but there are ways to address this, and we’ll

look at some of them. Normal 4 is an excellent idea for any organization with large amounts of

data—again, because keeping the data straight is vital to the organization’s mission.

Normal 5 is rarely necessary. It reaches into rarified heights where the purity of the data

model is more important than the real-world usability. Except in rare cases where permanent and

inflexible real-world constraints match the logical data design beautifully, you’ll probably end up

needing to denormalize anyway. Think it through, because you’ll realize some good stuff, but

don’t worry about meeting it to the letter. If you did Normal 4 correctly, you probably already

met it.

To summarize— at least Normal 2 for tiny organizations, and at least Normal 4 for any

operation where the data’s critical.

I’ll be conforming to Normal 4 for the Council of Light’s final database design, although

thinking about Normal 5 did lead me to some realizations I’ll incorporate into my design.

Should I Denormalize?

Since normalization is about reducing redundancy, denormalizing is about deliberately adding

redundancy to improve performance. Before beginning, consider whether or not it’s necessary.

Data Normalization, Denormalization, and the Forces of Darkness / Hollingsworth / p18

● Is the system’s performance unacceptable with fully normalized data? Mock up a

client and do some testing.

● If the performance is unacceptable, will denormalizing make it acceptable? Figure out

where your bottlenecks are.

● If you denormalize to clear those bottlenecks, will the system and its data still be

reliable?

Unless the answers to all three are “yes,” denormalization should be avoided.

Unfortunately for me, the Council of Light has some pretty old hardware and can’t or won’t

upgrade to newer and more efficient SQL software. I’d better get to work.

Denormalization Strategies

Materialized Views

If we’re lucky, we won’t need to denormalize our logical data design at all. We can let the

database management system store additional information on disk, and it’s the responsibility of

the DBMS software to keep the redundant information consistent.

Oracle does this with materialized views, which are pretty much what they sound like—SQL

views, but made material on the disk. Like regular views, they change when the underlying data

does. Microsoft SQL has something called indexed views, which I gather are similar although

I’ve never used them. Other SQL databases have standard hacks to simulate materialized views;

a little Googling will tell you whether or not yours does.

Database Constraints

The more common approach is to denormalize some carefully chosen parts of the database

design, adding redundancies to speed performance. Danger lies ahead. It is now the database

designer’s responsibility to create database constraints specifying how redundant pieces of data

will be kept consistent.

These constraints introduce a tradeoff. They do speed up reads, just as we wish, but they slow

down writes. If the database’s regular usage is write-heavy, such as the Council of Light’s

message forum, then this may actually be worse than the non-denormalized version.

Double Your Database Fun

If enough storage space is available, we can keep one fully-normalized master database, and

another denormalized database for querying. No app ever writes directly to the denormalized

one; it’s read-only from the app’s point of view. Similarly, no app ever reads directly from the

normalized master; it’s write-only from the app’s point of view.

This is a good, if expensive, plan. The fully normalized master database updates the querying

database upon change, or the querying database repopulates itself on a schedule. We no longer

have slower writes, and we still have faster reads. Our problem now becomes keeping the two

Data Normalization, Denormalization, and the Forces of Darkness / Hollingsworth / p19

database models perfectly synchronized. That itself takes time, of course, but your particular

situation may be such that you can do this.

Most commonly, the denormalized version populates itself by querying the normalized master

on a controlled schedule. It will thus be the only thing which ever reads from the normalized

master.

The danger is that data returned from the denormalized query base may be inaccurate if the

data has changed in the normalized master but the denormalized query database hasn’t

repopulated itself yet. If your data doesn’t generally change in a heartbeat, this may be

acceptable. If the future of all humankind hinges on the currency of your data, this approach

may not be acceptable.

Another possibility is for the normalized master to change the denormalized query database

whenever the normalized master is changed. This requires a complex set of triggers interfacing

the normalized and denormalized data designs, and the trigger set must be updated when the

denormalized design is altered. The need to handle triggers will slow down writes, so this isn’t a

good option for write-heavy applications, but the upside is that your two databases are much less

likely to be out of synch.

Space requirements often prohibit this strategy entirely.

Let the App Handle It

We add redundancies to our database, but let the application worry about synchronizing

redundant fields. We avoid the performance hit on writes, but now we’re relying on a different

piece of software to do the right thing at all times.

If this is the choice, document it thoroughly and unavoidably. Make a stern warning and a list

of the redundancies the first thing any future developer will see. It may also help if you include a

threat about noncompliant apps contributing to a future in which the world is overrun by

creatures of the night.

Denormalization Tactics

All right, so those are the basic approaches. All of them have one thing in common, which is

that they deliberately introduce redundancies. How do we decide what redundancies to

introduce?

Simple. We find out exactly what is causing those performance problems we noted—you

know, the ones which must be present in order for us to consider denormalization. Then we

introduce redundancies which will make those particular causes go away.

The two most common bottlenecks are the cost of joining multiple tables and, on very active

systems, the activity on a particular table being too high.

Pre-Joined Tables

Is it the joins? Which ones?

Data Normalization, Denormalization, and the Forces of Darkness / Hollingsworth / p20

Perhaps we find that our users do a lot of queries which require joining the vampire table and

the zombie table. If so, we could combine them into a single pre-joined table of the undead.

If our users often search all available personnel, joining combatants and former combatants

and noncombatants, then we may want to revert to our idea of keeping all Council members and

other helpers in a single personnel table.

This table is essentially the materialization of a join, so we populate if from the original tables

either on a schedule or via triggers when changing the originals.

Mirror Tables

If a particular table is too active, with constant querying and updating leading to slowdowns

and timeouts and deadlocks, consider a miniature and internal version of “Double your database

fun.” You can have a background and foreground copy of the same table. The background table

takes only writes, the foreground table is for reading, and synchronizing the two is a low-priority

process that happens when less is going on.

The obvious problem is that the data you’re reading has no guaranteed currency. In fact,

given that we’re doing this because a table is particularly active, it’s fairly likely not to be

current. It’s something to consider when the data in question doesn’t require up-to-the-second

currency, though.

Report Tables

Each day, between sunset and midnight, the Council’s system is pummeled with queries on

how to take out particular monsters. There’s a lot of joining of weaponry tables, and many users

are making the same queries to the same tables.

I can address this by making redundant tables just for these extremely common reports. My

table on how to take out a vampire will be modeled after the desired report rather than around the

logical data design, and might look something like this:

UID WEAPON HOW TO USE EFFECT

XXX cross expose monster to it monster retreats in pain

XXX stake, wood stab monster through the heart kills monster

XXX sunlight expose monster to it kills monster

XXX water, fresh, running put between self and monster barrier to monster

Except for the UID for internal use, this table contains exactly what the user wanted to know

and is therefore extremely fast to query.

The report table doesn’t take writes from apps. It updates itself from the logical data design

tables, regularly during off-peak hours and during peak hours as system resources permit.

Data Normalization, Denormalization, and the Forces of Darkness / Hollingsworth / p21

Split Tables

We may have distinct groups of users who query tables in distinct ways. Remember our table

of werewolf clans? Monster fighters and coordinators may be interested only in clans which

haven’t been exterminated, while historians studying the effectiveness of extermination methods

may be interested only in those which have. I could split that single table in two. The original

table could also be maintained as a master, in which case the split tables are special cases of

mirror tables (above) which happen to contain a subset instead of a complete copy. If few people

want to query the original table, I could maintain it as a view which joins the split tables and treat

the split tables as masters.

UID NAME LOCATION DATE
DISCOVERED

DATE
ELIMINATED

XXX Dances
with
Death

039:00123 12940614 14020819

XXX Family
of Blood

030:17675 16930321 16980605

UID NAME LOCATION DATE
DISCOVERED

XXX Fangs
and Fur

01:45701 20091001

XXX Howl 044:SW1 20100105

That’s a horizontal split, pulling rows out into different tables. For other needs we might do a

vertical split, keeping all the same rows/keys but with each table having separate sets of columns

of information.

This is only worthwhile when there are distinct kinds of queries which are, in effect, already

treating the table as more than one table.

Combined Tables

Instead of splitting one table into several, we might combine several into one. If tables have a

one-to-one relationship, it might speed performance to combine them into one table even if that

isn’t part of the logical database design. We might even combine tables with a one-to-many

Data Normalization, Denormalization, and the Forces of Darkness / Hollingsworth / p22

relationship, although that would significantly complicate our update process and would likely

work out to be a net loss.

For instance, I might combine the table of monster fighters with the table of training programs

on the grounds that there are duplicate columns (school names, skills taught/learned). That could

be useful for high-level coordination, which might require tracking current munitions training

programs by evaluating both munitions programs and the fighters rated as skilled in munitions.

A join would serve, but we might go with a combined table if we find that we’re getting many

such queries.

Combined tables differ from joined tables (above) in that they already share some data in

some relationship, while any two tables which are frequently joined are potential candidates for

joined tables. They also differ in that a joined table usually populates itself from the co-existing

normalized tables, while a combined table will usually be the master copy.

So what’s the difference between splitting tables and never combining them in the first place?

Or between combining tables and just not splitting them? Hey, I never said this was a science.

It’s more of an art. Or possibly a craft. Whatever it is, it’s definitely not for sissies. The

redundancies you choose to introduce must be based on the particular bottlenecks in your own

specific data set.

Index Tables

These are nice for searching hierarchies. Remember how Normal 5 taught us that weapon

composition is actually a hierarchy of materials rather than a simple list? Well, now we’re stuck

with searching that hierarchy by searching all the leaves under particular parent nodes and

combining with a bunch of union statements.

Or are we? We could make a metatable consisting of nothing but parent-child pairs and any

data which would speed searching. Like maybe this:

UUID PARENT_ID CHILD_ID LEVEL LEAF

XXXX AAAA BBBB 1 N

XXXX AAAA CCCC 1 N

XXXX BBBB QQQQ 2 Y

This table gets large fast, but it’s all numeric and Boolean, so searching is a breeze. It’s

simply an index for that tree of materials we made. Technically it’s derivable data (below), but

this is a special case which is almost always worthwhile when more than a minimal hierarchy

must be searched.

It can repopulate itself on a schedule, or changes to the main databases can trigger changes in

the index table.

Data Normalization, Denormalization, and the Forces of Darkness / Hollingsworth / p23

Repeating Groups

Let’s say that my table of monster fighters’ skill eventually shook out like this:

UID FIGHTER_ID SKILL_ID RATING

XXX AAA 10 5

XXX AAA 15 3

XXX BBB 12 4

XXX BBB 23 3

XXX BBB 17 4

This can hold an infinite number of skills. I could instead choose to compress rows, stringing

information across columns instead of down rows:

UID FIGHTER_ID SKILL_ID_1 RATING_1 SKILL_ID_2 RATING_2 SKILL_ID_3 RATING_3

XXX AAA 10 5 15 3

XXX BBB 12 4 23 3 17 4

Is this a good idea?

Well, it reduced the number of rows to search. The one-row-per-fighter structure seems like it

would be efficient, since I won’t normally need to do operations within a single row. The data in

the new row format is often accessed collectively. Those are all plusses.

On the minus side, I’ve artificially limited the number of skills a fighter can have. There’s no

stable and predictable number of fighting skills, so putting a limit on it is a big minus. Even if I

make the number unreachably huge, now I’ve got a table with tons of nulls.

This could be a good idea for data where there’s an actual hard limit on the number of fields,

though. If I’m making a report table (above) for monster activity within the past 12 months, a

limit of 12 on the months is quite reasonable.

Derivable Data

In rare cases, it’s the cost of doing a calculation which is prohibitive. These are usually cases

in which the algorithm for calculation is enormously complex and/or is itself dependent on

expensive queries. In such cases, it might be worth storing value C even though value A with

value B always works out to value C.

Changes to A or to B can trigger a function to rederive C. If C needs to be retrieved often, this

can be a lot cheaper than rederiving it every time it’s needed.

Data Normalization, Denormalization, and the Forces of Darkness / Hollingsworth / p24

Index tables (above) are derivable data, but they’re different in function. Those are for

internal use only, containing no data that anyone is likely to want to use directly. These are

derivable data which might be presented to a user.

Redundant Data

Yes, plain old duplicated data. A violation of Normal 1.

If we get a large number of queries which take most of their data from one table but have to

join with a single column from another table, it may be worth duplicating that one column in the

first table. This is almost never a good idea, since it goes against the basic principal of

normalization and brings back all the problems we were trying to avoid in the first place. It may

be worth a shot if normal database access is downright unbearable and some other constraint

makes a join table (above) unacceptable.

Denormalization in Hyperspace:
Star Schemas, OLAP Cubes, and Other Weirdness

These are elegant, but a great deal of design work because they require math that most of us

never learned. Modeling data into cubes? It sure sounds interesting, but it also sounds

suspiciously like one of those approaches where the approach turns into the real project.

Lacking a Ph.D. in mathematics, I’m as likely to make things worse as I am to make them

better. These things are fun to read about, but not suitable for most real-world deployments. If

you think you’re up for the task, Wikipedia is either a great starting place or a much-needed

reality check.

Conclusion
How does this help me with my original problem? I started with one question: Should all

Council members be in one table, or should fighters and noncombatants be treated separately?

Well, I’d just about concluded that I should have several separate tables for people in different

roles and use a Postgres hack to simulate a materialized view for searching all personnel at once.

That will avoid both the join performance hit and the many-nulls performance hit. After going

through the normalization and denormalization process, I see that that’s the best answer.

But then I realized that the Council of Light never actually agreed to pay me. Tightwads. If

they can’t cough up a few bucks to save the world more efficiently, they can keep poring over

their dusty tomes forever, and I don’t care if all Hell breaks loose.

Um. Perhaps I should rephrase that

Data Normalization, Denormalization, and the Forces of Darkness / Hollingsworth / p25

Endnotes

i SQL nulls are just plain unintuitive. SQL has an odd aggregation of behaviors with respect to its nulls. It’s never safe to

extrapolate from what you know about them to what they ought to do in other cases. Other white papers have been

written entirely on SQL’s nulls.

 Here are a couple of nutshell reasons why using lots of null values is not a big performance win: A null takes up the

entire width of the column, so that storing the string “NULL” would actually be faster in many cases. If you use an IS

NOT NULL condition, your SQL performance will be normal, but if your search allows for null values—as in our search

for all monster fighters, regardless of training or active duty status—then performance slows measurably.

 At least one major SQL vendor recommends never using the standard-mandated null, and always fudging via some other

reserved value.

ii There’s a “three and a half,” better called the Boyce-Cobb standard, which is a little more restrictive than the Third

Normal Form. Anything which complies with the Fourth Normal Form usually conforms to the Fifth Normal Form

automatically, without further design effort, leading some to wonder if they really deserve different whole integers.

There are also two different Sixth Normal Forms. We’ll ignore the weirdest stuff and stick to the standard five; you can

always do your own further research if you’re really interested.

iii I’m using this colon-delineated format because country codes and postal codes already exist and are standardized. I see

no sense in reinventing the wheel. As long as I’m keeping them in one field, a non-numeric delineator works best. This

system is guaranteed unique in theory, since each country has a separate country code and each country bears

responsibility for keeping its internal postal codes unique. I’d have to reserve values for “location unknown” and for

remote locations without postal codes.

